Antibodies to mammalian and plant V-ATPases cross react with the V-ATPase of insect cation-transporting plasma membranes.

نویسندگان

  • V E Russell
  • U Klein
  • M Reuveni
  • D D Spaeth
  • M G Wolfersberger
  • W R Harvey
چکیده

In immunobiochemical blots, polyclonal antibodies against subunits of plant and mammalian vacuolar-type ATPases (V-ATPases) cross-react strongly with corresponding subunits of larval Manduca sexta midgut plasma membrane V-ATPase. Thus, rabbit antiserum against Kalanchoe daigremontiana tonoplast V-ATPase holoenzyme cross-reacts with the 67, 56, 40, 28 and 20 kDa subunits of midgut V-ATPase separated by SDS-PAGE. Antisera against bovine chromaffin granule 72 and 39 kDa V-ATPase subunits cross-react with the corresponding 67 and 43 kDa subunits of midgut V-ATPase. Antisera against the 57 kDa subunit of both beet root and oat root V-ATPase cross-react strongly with the midgut 56 kDa V-ATPase subunit. In immunocytochemical light micrographs, antiserum against the beet root 57 kDa V-ATPase subunit labels the goblet cell apical membrane of both posterior and anterior midgut in freeze-substituted and fixed sections. The plant antiserum also labels the apical brush-border plasma membrane of Malpighian tubules. The ability of antibodies against plant V-ATPase to label these insect membranes suggests a high sequence homology between V-ATPases from plants and insects. Both of the antibody-labelled insect membranes transport K+ and both membranes possess F1-like particles, portasomes, on their cytoplasmic surfaces. This immunolabelling by xenic V-ATPase antisera of two insect cation-transporting membranes suggests that the portasomes on these membranes may be V-ATPase particles, similar to those reported on V-ATPase-containing vacuolar membranes from various sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE INSECT V-ATPase, A PLASMA MEMBRANE PROTON PUMP ENERGIZING SECONDARY ACTIVE TRANSPORT: IMMUNOLOGICAL EVIDENCE FOR THE OCCURRENCE OF A V-ATPase IN INSECT ION-TRANSPORTING EPITHELIA.

Active electrogenic K+ transport in insects serves as the energy source for secretion or absorption in gastrointestinal epithelia or for the receptor current in sensory epithelia. In the larval midgut of the tobacco hornworm Manduca sexta, a vacuolar-type proton pump (V-ATPase) and a K+/nH+ antiport represent the functional elements of the potassium pump. Several immunological findings support ...

متن کامل

INSECT MALPIGHIAN TUBULES: V-ATPase ACTION IN ION AND FLUID TRANSPORT.

Insect Malpighian tubules secrete fluid into the lumen as part of their function as excretory organs. The underlying ion transport is, when stimulated, faster than in any other known tissue. It is driven by the activity of an H+-transporting V-ATPase situated on the luminal cell membranes. This ATPase, together with cation/H+ antiporter(s), constitutes a common cation pump which can transport s...

متن کامل

The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: molecular analysis of electrogenic potassium transport in the tobacco hornworm midgut.

Goblet cell apical membranes in the larval midgut of Manduca sexta are the site of active and electrogenic K+ secretion. They possess a vacuolar-type ATPase which, in its immunopurified form, consists of at least nine polypeptides. cDNAs for the A and B subunits screened by monoclonal antibodies to the A subunit of the Manduca V-ATPase or by hybridisation with a cDNA probe for a plant V-ATPase ...

متن کامل

Vacuolar-type proton pumps in insect epithelia.

Active transepithelial cation transport in insects was initially discovered in Malpighian tubules, and was subsequently also found in other epithelia such as salivary glands, labial glands, midgut and sensory sensilla. Today it appears to be established that the cation pump is a two-component system of a H(+)-transporting V-ATPase and a cation/nH(+) antiporter. After tracing the discovery of th...

متن کامل

Properties of the Plasma Membrane ATPases of the Halophilic Archaebacteria Haloferax mediterranei and Haloferax volcanii

Both, Haloferax mediterranei and Haloferax volcanii membranes contain ATPases which are capable of hydrolyzing ATP in presence of Mg2+ or Mn2+. The ATPases require high con­ centrations of NaCl, a pH value of 9, and high temperatures up to 60 °C. Free manganese ions inhibited the enzyme activity of either ATPase. The ATPases of Hf. mediterranei and Hf. vol­ canii, respectively, show different s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 166  شماره 

صفحات  -

تاریخ انتشار 1992